5,181 research outputs found

    Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa

    Get PDF
    Key aspects of a river's temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal metrics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa. These metrics were correlated with 16 environmental variables. Correlations enabled development of multiple regression models which facilitated mapping of temperature metrics over the study area. This approach has the potential to be applied at a national scale as more thermal time series are collected nationally. It is argued that the appropriateness of management decisions in rivers can be improved by including guidelines for thermal metrics at a regional scale. Such maps could facilitate incorporation of a temperature component into management guidelines for water resources

    Ecological impacts of small dams on South African rivers Part 2: Biotic response – abundance and composition of macroinvertebrate communities

    Get PDF
    This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments

    Spin injection in a single metallic nanoparticle: a step towards nanospintronics

    Full text link
    We have fabricated nanometer sized magnetic tunnel junctions using a new nanoindentation technique in order to study the transport properties of a single metallic nanoparticle. Coulomb blockade effects show clear evidence for single electron tunneling through a single 2.5 nm Au cluster. The observed magnetoresistance is the signature of spin conservation during the transport process through a non magnetic cluster.Comment: 3 page

    A new methodology to determine kinetic parameters for one- and two-step chemical models

    Get PDF
    In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used

    Testing Conditional Independence of Discrete Distributions

    Full text link
    We study the problem of testing \emph{conditional independence} for discrete distributions. Specifically, given samples from a discrete random variable (X,Y,Z)(X, Y, Z) on domain [ℓ1]×[ℓ2]×[n][\ell_1]\times[\ell_2] \times [n], we want to distinguish, with probability at least 2/32/3, between the case that XX and YY are conditionally independent given ZZ from the case that (X,Y,Z)(X, Y, Z) is ϵ\epsilon-far, in ℓ1\ell_1-distance, from every distribution that has this property. Conditional independence is a concept of central importance in probability and statistics with a range of applications in various scientific domains. As such, the statistical task of testing conditional independence has been extensively studied in various forms within the statistics and econometrics communities for nearly a century. Perhaps surprisingly, this problem has not been previously considered in the framework of distribution property testing and in particular no tester with sublinear sample complexity is known, even for the important special case that the domains of XX and YY are binary. The main algorithmic result of this work is the first conditional independence tester with {\em sublinear} sample complexity for discrete distributions over [ℓ1]×[ℓ2]×[n][\ell_1]\times[\ell_2] \times [n]. To complement our upper bounds, we prove information-theoretic lower bounds establishing that the sample complexity of our algorithm is optimal, up to constant factors, for a number of settings. Specifically, for the prototypical setting when ℓ1,ℓ2=O(1)\ell_1, \ell_2 = O(1), we show that the sample complexity of testing conditional independence (upper bound and matching lower bound) is \[ \Theta\left({\max\left(n^{1/2}/\epsilon^2,\min\left(n^{7/8}/\epsilon,n^{6/7}/\epsilon^{8/7}\right)\right)}\right)\,. \

    First steps in the development of a water temperature model framework for refining the ecological Reserve in South African rivers

    Get PDF
    Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act's ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans

    The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    Get PDF
    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion

    Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces

    Get PDF
    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed

    Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy

    Full text link
    Chloroplast microsatellites have been widely used in population genetic studies of conifers in recent years. However, their haplotype configurations suggest that they could have high levels of homoplasy, thus limiting the power of these molecular markers. A coalescent-based computer simulation was used to explore the influence of homoplasy on measures of genetic diversity based on chloroplast microsatellites. The conditions of the simulation were defined to fit isolated populations originating from the colonization of one single haplotype into an area left available after a glacial retreat. Simulated data were compared with empirical data available from the literature for a species of Pinus that has expanded north after the Last Glacial Maximum. In the evaluation of genetic diversity, homoplasy was found to have little influence on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance estimates (D2sh) were much more affected. The effect of the number of chloroplast microsatellite loci for evaluation of genetic diversity is also discussed
    • …
    corecore